六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦>學習方法>高中學習方法>高三學習方法>高三數學>

高三數學都有哪些知識點

時間: 贊銳0 分享

無論哪位成功人士,他的背后都有辛勤的汗水,一切的一切都是他努力的結果,都是汗水的結晶。學習是人生的必修課,我們無法逃避,也不能逃避。那么就請我們興于接受它,并且能勤奮地學習,快樂地學習。小編給大家?guī)淼?a href='http://m.yishupeixun.net/xuexiff/gaosanshuxue/' target='_blank'>高三數學知識點,希望能幫助到你!

高三數學知識點1

一、函數的定義域的常用求法:

1、分式的分母不等于零;

2、偶次方根的被開方數大于等于零;

3、對數的真數大于零;

4、指數函數和對數函數的底數大于零且不等于1;

5、三角函數正切函數y=tanx中x≠kπ+π/2;

6、如果函數是由實際意義確定的解析式,應依據自變量的實際意義確定其取值范圍。

二、函數的解析式的常用求法:

1、定義法;

2、換元法;

3、待定系數法;

4、函數方程法;

5、參數法;

6、配方法

三、函數的值域的常用求法:

1、換元法;

2、配方法;

3、判別式法;

4、幾何法;

5、不等式法;

6、單調性法;

7、直接法

四、函數的最值的常用求法:

1、配方法;

2、換元法;

3、不等式法;

4、幾何法;

5、單調性法

五、函數單調性的常用結論:

1、若f(x),g(x)均為某區(qū)間上的增(減)函數,則f(x)+g(x)在這個區(qū)間上也為增(減)函數。

2、若f(x)為增(減)函數,則-f(x)為減(增)函數。

3、若f(x)與g(x)的單調性相同,則f[g(x)]是增函數;若f(x)與g(x)的單調性不同,則f[g(x)]是減函數。

4、奇函數在對稱區(qū)間上的單調性相同,偶函數在對稱區(qū)間上的單調性相反。

5、常用函數的單調性解答:比較大小、求值域、求最值、解不等式、證不等式、作函數圖象。

六、函數奇偶性的常用結論:

1、如果一個奇函數在x=0處有定義,則f(0)=0,如果一個函數y=f(x)既是奇函數又是偶函數,則f(x)=0(反之不成立)。

2、兩個奇(偶)函數之和(差)為奇(偶)函數;之積(商)為偶函數。

3、一個奇函數與一個偶函數的積(商)為奇函數。

4、兩個函數y=f(u)和u=g(x)復合而成的函數,只要其中有一個是偶函數,那么該復合函數就是偶函數;當兩個函數都是奇函數時,該復合函數是奇函數。

5、若函數f(x)的定義域關于原點對稱,則f(x)可以表示為f(x)=1/2[f(x)+f(-x)]+1/2[f(x)+f(-x)],該式的特點是:右端為一個奇函數和一個偶函數的和。

高三數學知識點2

1、直線的傾斜角

定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

2、直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點的直線的斜率公式:

注意下面四點:

(1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與P1、P2的順序無關;

(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標直接求得;

(4)求直線的傾斜角可由直線上兩點的坐標先求斜率得到。

3、直線方程

點斜式:

直線斜率k,且過點

注意:當直線的斜率為0°時,k=0,直線的方程是y=y1。當直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標都等于x1,所以它的方程是x=x1。

高三數學知識點3

①正棱錐各側棱相等,各側面都是全等的等腰三角形,各等腰三角形底邊上的高相等(它叫做正棱錐的斜高).

②正棱錐的高、斜高和斜高在底面內的射影組成一個直角三角形,正棱錐的高、側棱、側棱在底面內的射影也組成一個直角三角形.

⑶特殊棱錐的頂點在底面的射影位置:

①棱錐的側棱長均相等,則頂點在底面上的射影為底面多邊形的外心.

②棱錐的側棱與底面所成的角均相等,則頂點在底面上的射影為底面多邊形的外心.

③棱錐的各側面與底面所成角均相等,則頂點在底面上的射影為底面多邊形內心.

④棱錐的頂點到底面各邊距離相等,則頂點在底面上的射影為底面多邊形內心.

⑤三棱錐有兩組對棱垂直,則頂點在底面的射影為三角形垂心.

⑥三棱錐的三條側棱兩兩垂直,則頂點在底面上的射影為三角形的垂心.

⑦每個四面體都有外接球,球心0是各條棱的中垂面的交點,此點到各頂點的距離等于球半徑;

⑧每個四面體都有內切球,球心

是四面體各個二面角的平分面的交點,到各面的距離等于半徑.

[注]:i.各個側面都是等腰三角形,且底面是正方形的棱錐是正四棱錐.(×)(各個側面的等腰三角形不知是否全等)

ii.若一個三角錐,兩條對角線互相垂直,則第三對角線必然垂直.

簡證:AB⊥CD,AC⊥BD

BC⊥AD.令得,已知則.

iii.空間四邊形OABC且四邊長相等,則順次連結各邊的中點的四邊形一定是矩形.

iv.若是四邊長與對角線分別相等,則順次連結各邊的中點的四邊是一定是正方形.

簡證:取AC中點,則平面90°易知EFGH為平行四邊形

EFGH為長方形.若對角線等,則為正方形.

高三數學都有哪些知識點相關文章

高三數學知識點考點總結大全

高三數學知識點大全

高三數學知識點梳理匯總

高三數學知識點總結

高三數學知識點總結歸納

高三數學重點知識總結大全

高三數學的必備知識點總結

高三數學知識點集錦

高考數學知識點歸納整理

1069624