六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學(xué)習(xí)啦 > 學(xué)習(xí)方法 > 高中學(xué)習(xí)方法 > 高三學(xué)習(xí)方法 > 高三數(shù)學(xué) > 高三數(shù)學(xué)必考知識點歸納大全

高三數(shù)學(xué)必考知識點歸納大全

時間: 楚琪0 分享

2022高三數(shù)學(xué)必考知識點歸納大全

與高一高二不同之處在于,此時復(fù)習(xí)力學(xué)部分知識是為了更好的與高考考綱相結(jié)合,尤其水平中等或中等偏下的學(xué)生,此時需要進(jìn)行查漏補缺,但也需要同時提升能力,填補知識、技能的空白。下面是小編給大家?guī)淼母呷龜?shù)學(xué)必考知識點歸納大全,以供大家參考!

高三數(shù)學(xué)必考知識點歸納大全

三角函數(shù)。

注意歸一公式、誘導(dǎo)公式的正確性。

數(shù)列題。

1、證明一個數(shù)列是等差(等比)數(shù)列時,最后下結(jié)論時要寫上以誰為首項,誰為公差(公比)的等差(等比)數(shù)列;

2、最后一問證明不等式成立時,如果一端是常數(shù),另一端是含有n的式子時,一般考慮用放縮法;如果兩端都是含n的式子,一般考慮數(shù)學(xué)歸納法(用數(shù)學(xué)歸納法時,當(dāng)n=k+1時,一定利用上n=k時的假設(shè),否則不正確。利用上假設(shè)后,如何把當(dāng)前的式子轉(zhuǎn)化到目標(biāo)式子,一般進(jìn)行適當(dāng)?shù)姆趴s,這一點是有難度的。簡潔的方法是,用當(dāng)前的式子減去目標(biāo)式子,看符號,得到目標(biāo)式子,下結(jié)論時一定寫上綜上:由①②得證;

3、證明不等式時,有時構(gòu)造函數(shù),利用函數(shù)單調(diào)性很簡單

立體幾何題。

1、證明線面位置關(guān)系,一般不需要去建系,更簡單;

2、求異面直線所成的角、線面角、二面角、存在性問題、幾何體的高、表面積、體積等問題時,要建系;

3、注意向量所成的角的余弦值(范圍)與所求角的余弦值(范圍)的關(guān)系。

概率問題。

1、搞清隨機試驗包含的所有基本事件和所求事件包含的基本事件的個數(shù);

2、搞清是什么概率模型,套用哪個公式;

3、記準(zhǔn)均值、方差、標(biāo)準(zhǔn)差公式;

4、求概率時,正難則反(根據(jù)p1+p2+……+pn=1);

5、注意計數(shù)時利用列舉、樹圖等基本方法;

6、注意放回抽樣,不放回抽樣;

正弦、余弦典型例題。

1、在△ABC中,∠C=90°,a=1,c=4,則sinA的值為

2、已知α為銳角,且,則α的度數(shù)是()A、30°B、45°C、60°D、90°

3、在△ABC中,若,∠A,∠B為銳角,則∠C的度數(shù)是()A、75°B、90°C、105°D、120°

4、若∠A為銳角,且,則A=()A、15°B、30°C、45°D、60°

5、在△ABC中,AB=AC=2,AD⊥BC,垂足為D,且AD=,E是AC中點,EF⊥BC,垂足為F,求sin∠EBF的值。

正弦、余弦解題訣竅。

1、已知兩角及一邊,或兩邊及一邊的對角(對三角形是否存在要討論)用正弦定理。

2、已知三邊,或兩邊及其夾角用余弦定理

3、余弦定理對于確定三角形形狀非常有用,只需要知道角的余弦值為正,為負(fù),還是為零,就可以確定是鈍角。直角還是銳角。

高三數(shù)學(xué)重要知識點總結(jié)最新

符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡。

軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。

【軌跡方程】就是與幾何軌跡對應(yīng)的代數(shù)描述。

一、求動點的軌跡方程的基本步驟

⒈建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);

⒉寫出點M的集合;

⒊列出方程=0;

⒋化簡方程為最簡形式;

⒌檢驗。

二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。

⒈直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

⒉定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

⒊相關(guān)點法:用動點Q的坐標(biāo)x,y表示相關(guān)點P的坐標(biāo)x0、y0,然后代入點P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。

⒋參數(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

⒌交軌法:將兩動曲線方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

直譯法:求動點軌跡方程的一般步驟

①建系——建立適當(dāng)?shù)淖鴺?biāo)系;

②設(shè)點——設(shè)軌跡上的任一點P(x,y);

③列式——列出動點p所滿足的關(guān)系式;

④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

⑤證明——證明所求方程即為符合條件的動點軌跡方程。

高三數(shù)學(xué)必修三知識點復(fù)習(xí)

1.抓基礎(chǔ)有三個要點

(1)保證綜合訓(xùn)練題量,限量完成套題訓(xùn)練,在快速、準(zhǔn)確、規(guī)范上下功夫。

(2)“抬起頭來做題”,從清晰解題思路、優(yōu)化解題步驟、尋找切入點方面,做好解題的歸納小結(jié)。

(3)及時改錯、補漏、拾遺。

2.從能力要求的角度跟進(jìn)提升

(1)熟練三種數(shù)學(xué)語言(數(shù)學(xué)文字語言,數(shù)學(xué)符號語言,數(shù)學(xué)圖形語言)的相互轉(zhuǎn)換。

(2)強化訓(xùn)練細(xì)致嚴(yán)密的審題習(xí)慣。

(3)加強訓(xùn)練快捷靈活的解題切入。

(4)要在確定合理運算方向,選擇合理運算途徑,優(yōu)化組合公式法則,形成靈活善變的解題策略方面下功夫。

(5)對實際應(yīng)用、開放探索問題,解選擇題、填空題等策略問題也應(yīng)適度訓(xùn)練。

3.做好心理調(diào)節(jié)

除數(shù)學(xué)能力外,過硬的心理素質(zhì)也是影響考試成敗的主要因素??忌覝?zhǔn)自己的位置,確立合理的參照目標(biāo),始終看到自己的成績和進(jìn)步,形成積極的心理效應(yīng),以提高后期復(fù)習(xí)效率和應(yīng)考能力。同時要明確,試卷必有難題,作答時要充滿自信,明確試卷的難易對每個人都公平。

高三數(shù)學(xué)必考知識點歸納大全相關(guān)文章:

高三數(shù)學(xué)考試必考的重要知識點歸納

高三數(shù)學(xué)必背必考知識點

高三數(shù)學(xué)相關(guān)的知識點歸納

高三數(shù)學(xué)必考知識點

高三數(shù)學(xué)復(fù)習(xí)知識點總結(jié)

高三數(shù)學(xué)知識點總結(jié)大全

高三數(shù)學(xué)必考知識點復(fù)習(xí)總結(jié)

高三數(shù)學(xué)高考知識點總結(jié)

高三數(shù)學(xué)知識點歸納

高三數(shù)學(xué)重點知識總結(jié)大全

1377313