高考數學必考知識點最全總結
2023高考數學必考知識點最全總結
其實在高三這一年,只要孩子不放棄,繼續(xù)努力,逆襲的幾率還是很大的,特別是數學基礎不好的同學。下面是小編為大家整理的關于高考數學必考知識點最全總結,歡迎大家來閱讀。
高考數學必考的知識點大全
一、自變量x和因變量y有如下關系:
y=kx+b
則此時稱y是x的一次函數。
特別地,當b=0時,y是x的正比例函數。
即:y=kx(k為常數,k≠0)
二、一次函數的性質:
1、y的變化值與對應的x的變化值成正比例,比值為k
即:y=kx+b(k為任意不為零的實數b取任何實數)
2、當x=0時,b為函數在y軸上的截距。
三、一次函數的圖像及性質:
1、作法與圖形:通過如下3個步驟
(1)列表;
(2)描點;
(3)連線,可以作出一次函數的圖像——一條直線。因此,作一次函數的圖像只需知道2點,并連成直線即可。(通常找函數圖像與x軸和y軸的交點)
2、性質:(1)在一次函數上的任意一點P(x,y),都滿足等式:y=kx+b。(2)一次函數與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數的圖像總是過原點。
3、k,b與函數圖像所在象限:
當k>0時,直線必通過一、三象限,y隨x的增大而增大;
當k<0時,直線必通過二、四象限,y隨x的增大而減小。
當b>0時,直線必通過一、二象限;
當b=0時,直線通過原點;
當b<0時,直線必通過三、四象限。
特別地,當b=O時,直線通過原點O(0,0)表示的是正比例函數的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
高考向量數學重要知識點
1、向量的基本概念
(1)向量
既有大小又有方向的量叫做向量。物理學中又叫做矢量。如力、速度、加速度、位移就是向量。
向量可以用一條有向線段(帶有方向的線段)來表示,用有向線段的長度表示向量的大小,用箭頭所指的方向表示向量的方向。向量也可以用一個小寫字母a,b,c表示,或用兩個大寫字母加表示(其中前面的字母為起點,后面的字母為終點)
(2)平行向量
方向相同或相反的非零向量,叫做平行向量。平行向量也叫做共線向量。
若向量a、b平行,記作a∥b。
規(guī)定:0與任一向量平行。
(3)相等向量
長度相等且方向相同的向量叫做相等向量。
①向量相等有兩個要素:一是長度相等,二是方向相同,二者缺一不可。
②向量a,b相等記作a=b。
③零向量都相等。
④任何兩個相等的非零向量,都可用同一有向線段表示,但特別要注意向量相等與有向線段的起點無關。
2、對于向量概念需注意
(1)向量是區(qū)別于數量的一種量,既有大小,又有方向,任意兩個向量不能比較大小,只可以判斷它們是否相等,但向量的??梢员容^大小。
(2)向量共線與表示它們的有向線段共線不同。向量共線時,表示向量的有向線段可以是平行的,不一定在同一條直線上;而有向線段共線則是指線段必須在同一條直線上。
(3)由向量相等的定義可知,對于一個向量,只要不改變它的大小和方向,它是可以任意平行移動的,因此用有向線段表示向量時,可以任意選取有向線段的起點,由此也可得到:任意一組平行向量都可以平移到同一條直線上。
3、向量的運算律
(1)交換律:α+β=β+α
(2)結合律:(α+β)+γ=α+(β+γ)
(3)數量加法的分配律:(λ+μ)α=λα+μα
(4)向量加法的分配律:γ(α+β)=γα+γβ
高考數學函數的重點知識整理
1、函數的奇偶性
(1)若f(x)是偶函數,那么f(x)=f(—x);
(2)若f(x)是奇函數,0在其定義域內,則f(0)=0(可用于求參數);
(3)判斷函數奇偶性可用定義的等價形式:f(x)±f(—x)=0或(f(x)≠0);
(4)若所給函數的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數在對稱的單調區(qū)間內有相同的單調性;偶函數在對稱的單調區(qū)間內有相反的單調性;
2、復合函數的.有關問題
(1)復合函數定義域求法:若已知的定義域為[a,b],其復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即f(x)的定義域);研究函數的問題一定要注意定義域優(yōu)先的原則。
(2)復合函數的單調性由“同增異減”判定;
3、函數圖像(或方程曲線的對稱性)
(1)證明函數圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關于y=x+a(y=—x+a)的對稱曲線C2的方程為f(y—a,x+a)=0(或f(—y+a,—x+a)=0);
(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a—x,2b—y)=0;
(5)若函數y=f(x)對x∈R時,f(a+x)=f(a—x)恒成立,則y=f(x)圖像關于直線x=a對稱;
(6)函數y=f(x—a)與y=f(b—x)的圖像關于直線x=對稱;
4、函數的周期性
(1)y=f(x)對x∈R時,f(x +a)=f(x—a)或f(x—2a)=f(x)(a>0)恒成立,則y=f(x)是周期為2a的周期函數;
(2)若y=f(x)是偶函數,其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數;
(3)若y=f(x)奇函數,其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數;
(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2的周期函數;
(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數y=f(x)是周期為2的周期函數;
(6)y=f(x)對x∈R時,f(x+a)=—f(x)(或f(x+a)=,則y=f(x)是周期為2的周期函數;
5、方程k=f(x)有解k∈D(D為f(x)的值域);
6、a≥f(x)恒成立a≥[f(x)]max,;a≤f(x)恒成立a≤[f(x)]min;
7、(1)(a>0,a≠1,b>0,n∈R+);
(2)l og a N=(a>0,a≠1,b>0,b≠1);
(3)l og a b的符號由口訣“同正異負”記憶;
(4)a log a N= N(a>0,a≠1,N>0);
8、判斷對應是否為映射時,抓住兩點:
(1)A中元素必須都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9、能熟練地用定義證明函數的單調性,求反函數,判斷函數的奇偶性。
10、對于反函數,應掌握以下一些結論:
(1)定義域上的單調函數必有反函數;
(2)奇函數的反函數也是奇函數;
(3)定義域為非單元素集的偶函數不存在反函數;
(4)周期函數不存在反函數;
(5)互為反函數的兩個函數具有相同的單調性;
(6)y=f(x)與y=f—1(x)互為反函數,設f(x)的定義域為A,值域為B,則有f[f——1(x)]=x(x∈B),f——1[f(x)]=x(x∈A)。
11、處理二次函數的問題勿忘數形結合;二次函數在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關系;
12、依據單調性,利用一次函數在區(qū)間上的保號性可解決求一類參數的范圍問題
13、恒成立問題的處理方法:
(1)分離參數法;
(2)轉化為一元二次方程的根的分布列不等式(組)求解。