八年級上冊數學總復習知識點
課后及時的復習數學可以極大程度的積累知識。下面小編給大家分享一些八年級上冊數學總復習知識點,大家快來跟小編一起欣賞吧。
八年級上冊數學總復習知識點(一)
中心對稱圖形
1、定義
在平面內,一個圖形繞某個點旋轉180°,如果旋轉前后的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點叫做它的對稱中心。
2、性質
(1)關于中心對稱的兩個圖形是全等形。
(2)關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分。
(3)關于中心對稱的兩個圖形,對應線段平行(或在同一直線上)且相等。 3、判定
如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱。
八年級上冊數學總復習知識點(二)
平面直角坐標系及有關概念
1、平面直角坐標系
在平面內,兩條互相垂直且有公共原點的數軸,組成平面直角坐標系。其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;x軸和y軸統稱坐標軸。它們的公共原點O稱為直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。
2、為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。
注意:x軸和y軸上的點(坐標軸上的點),不屬于任何一個象限。
3、點的坐標的概念
對于平面內任意一點P,過點P分別x軸、y軸向作垂線,垂足在上x軸、y軸對應的數a,b分別叫做點P的橫坐標、縱坐標,有序數對(a,b)叫做點P的坐標。
點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當ab時,(a,b)和(b,a)是兩個不同點的坐標。
平面內點的與有序實數對是一一對應的。
4、不同位置的點的坐標的特征
(1)、各象限內點的坐標的特征
點P(x,y)在第一象限x0,y0
點P(x,y)在第二象限x0,y0
點P(x,y)在第三象限x0,y0
點P(x,y)在第四象限x0,y0
(2)、坐標軸上的點的特征
點P(x,y)在x軸上y0,x為任意實數
點P(x,y)在y軸上x0,y為任意實數
點P(x,y)既在x軸上,又在y軸上x,y同時為零,即點P坐標為(0,0)即原點
學而知文化培訓學校八年級數學教輔
(3)、兩條坐標軸夾角平分線上點的坐標的特征
點P(x,y)在第一、三象限夾角平分線(直線y=x)上x與y相等
點P(x,y)在第二、四象限夾角平分線上x與y互為相反數
(4)、和坐標軸平行的直線上點的坐標的特征
位于平行于x軸的直線上的各點的縱坐標相同。
位于平行于y軸的直線上的各點的橫坐標相同。
(5)、關于x軸、y軸或原點對稱的點的坐標的特征
點P與點p’關于x軸對稱橫坐標相等,縱坐標互為相反數,即點P(x,y)關于x軸的對稱點為P’(x,-y)
點P與點p’關于y軸對稱縱坐標相等,橫坐標互為相反數,即點P(x,y)關于y軸的對稱點為P’(-x,y)
點P與點p’關于原點對稱橫、縱坐標均互為相反數,即點P(x,y)關于原點的對稱點為P’(-x,-y)
(6)、點到坐標軸及原點的距離
點P(x,y)到坐標軸及原點的距離:
(1)點P(x,y)到x軸的距離等于y
(2)點P(x,y)到y軸的距離等于x
22(3)點P(x,y)到原點的距離等于xy
八年級上冊數學總復習知識點(三)
正比例函數和一次函數
1、正比例函數和一次函數的概念
一般地,若兩個變量x,y間的關系可以表示成ykxb(k,b為常數,k0)的形式,則稱y是x的一次函數(x為自變量,y為因變量)。
特別地,當一次函數ykxb中的b=0時(即ykx)(k為常數,k0),稱y是x的正比例函數。
第13 / 17頁
學而知文化培訓學校八年級數學教輔
2、一次函數的圖像: 所有一次函數的圖像都是一條直線
3、一次函數、正比例函數圖像的主要特征:
一次函數ykxb的圖像是經過點(0,b)的直線;正比例函數ykx的圖像是經過原點(0,0)的直線。
4、正比例函數的性質
一般地,正比例函數ykx有下列性質:
(1)當k>0時,圖像經過第一、三象限,y隨x的增大而增大;
(2)當k<0時,圖像經過第二、四象限,y隨x的增大而減小。
5、一次函數的性質
一般地,一次函數ykxb有下列性質:
(1)當k>0時,y隨x的增大而增大
(2)當k<0時,y隨x的增大而減小
6、正比例函數和一次函數解析式的確定
確定一個正比例函數,就是要確定正比例函數定義式ykx(k0)中的常數k。確定一個一次函數,需要確定一次函數定義式ykxb(k0)中的常數k和b。解這類問題的一般方法是待定系數法。
7、一次函數與一元一次方程的關系:
任何一個一元一次方程都可轉化為:kx+b=0(k、b為常數,k≠0)的形式. 而一次函數解析式形式正是y=kx+b(k、b為常數,k≠0).當函數值為0時,•即kx+b=0就與一元一次方程完全相同.
結論:由于任何一元一次方程都可轉化為kx+b=0(k、b為常數,k≠0)的形式.所以解一元一次方程可以轉化為:當一次函數值為0時,求相應的自變量的值.
從圖象上看,這相當于已知直線y=kx+b確定它與x軸交點的橫坐標值.
八年級上冊數學總復習知識點相關文章:
八年級上冊數學總復習知識點
![](http://lhpay.gzcl999.com/static/doc/images/pc/icon_star.png)
![](http://lhpay.gzcl999.com/static/doc/images/pc/icon_star.png)
![](http://lhpay.gzcl999.com/static/doc/images/pc/icon_star.png)
![](http://lhpay.gzcl999.com/static/doc/images/pc/icon_star.png)
![](http://lhpay.gzcl999.com/static/doc/images/pc/icon_star.png)