六月丁香五月婷婷,丁香五月婷婷网,欧美激情网站,日本护士xxxx,禁止18岁天天操夜夜操,18岁禁止1000免费,国产福利无码一区色费

學習啦 > 知識大全 > 方法百科 > 方法大全 > 數學解題思維方法

數學解題思維方法

時間: 澤凡0 分享

方法大全數學解題思維方法

數學解題的思維方法很多,如分析法,綜合法,變更問題法,試驗法,聯(lián)想法,換元法,數形結合法,構造法,待定系數法,等等。以下是小編為大家整理的數學解題思維方法,僅供參考,希望能夠幫助到大家。

數學解題思維方法

數學解題思維

在小學數學解題方法中,運用概念、判斷、推理來反映現實的思維過程,叫抽象思維,也叫邏輯思維。

抽象思維又分為:形式思維和辯證思維??陀^現實有其相對穩(wěn)定的一面,我們就可以采用形式思維的方式;客觀存在也有其不斷發(fā)展變化的一面,我們可以采用辯證思維的方式。形式思維是辯證思維的基礎。

形式思維能力:分析、綜合、比較、抽象、概括、判斷、推理。

辯證思維能力:聯(lián)系、發(fā)展變化、對立統(tǒng)一律、質量互變律、否定之否定律。

小學數學要培養(yǎng)學生初步的抽象思維能力,重點突出在:

(1)思維品質上,應該具備思維的敏捷性、靈活性、聯(lián)系性和創(chuàng)造性。

(2)思維方法上,應該學會有條有理,有根有據地思考。

(3)思維要求上,思路清晰,因果分明,言必有據,推理嚴密。

(4)思維訓練上,應該要求:正確地運用概念,恰當地下判斷,合乎邏輯地推理。

1、對照法

如何正確地理解和運用數學概念?小學數學常用的方法就是對照法。根據數學題意,對照概念、性質、定律、法則、公式、名詞、術語的含義和實質,依靠對數學知識的理解、記憶、辨識、再現、遷移來解題的方法叫做對照法。

這個方法的思維意義就在于,訓練學生對數學知識的正確理解、牢固記憶、準確辨識。

例1:三個連續(xù)自然數的和是18,則這三個自然數從小到大分別是多少?

對照自然數的概念和連續(xù)自然數的性質可以知道:三個連續(xù)自然數和的平均數就是這三個連續(xù)自然數的中間那個數。

例2:判斷題:能被2除盡的數一定是偶數。

這里要對照“除盡”和“偶數”這兩個數學概念。只有這兩個概念全理解了,才能做出正確判斷。

2、公式法

運用定律、公式、規(guī)則、法則來解決問題的方法。它體現的是由一般到特殊的演繹思維。公式法簡便、有效,也是小學生學習數學必須學會和掌握的一種方法。但一定要讓學生對公式、定律、規(guī)則、法則有一個正確而深刻的理解,并能準確運用。

例3:計算59×37+12×59+59

59×37+12×59+59

=59×(37+12+1)…………運用乘法分配律

=59×50…………運用加法計算法則

=(60-1)×50…………運用數的組成規(guī)則

=60×50-1×50…………運用乘法分配律

=3000-50…………運用乘法計算法則

=2950…………運用減法計算法則

3、比較法

通過對比數學條件及問題的異同點,研究產生異同點的原因,從而發(fā)現解決問題的方法,叫比較法。

比較法要注意:

(1)找相同點必找相異點,找相異點必找相同點,不可或缺,也就是說,比較要完整。

(2)找聯(lián)系與區(qū)別,這是比較的實質。

(3)必須在同一種關系下(同一種標準)進行比較,這是“比較”的基本條件。

(4)要抓住主要內容進行比較,盡量少用“窮舉法”進行比較,那樣會使重點不突出。

(5)因為數學的嚴密性,決定了比較必須要精細,往往一個字,一個符號就決定了比較結論的對或錯。

例4:填空:0.75的最高位是(),這個數小數部分的最高位是();十分位的數4與十位上的數4相比,它們的()相同,()不同,前者比后者小了()。

這道題的意圖就是要對“一個數的最高位和小數部分的最高位的區(qū)別”,還有“數位和數值”的區(qū)別等。

例5:六年級同學種一批樹,如果每人種5棵,則剩下75棵樹沒有種;如果每人種7棵,則缺少15棵樹苗。六年級有多少學生?

這是兩種方案的比較。相同點是:六年級人數不變;相異點是:兩種方案中的條件不一樣。

找聯(lián)系:每人種樹棵數變化了,種樹的總棵數也發(fā)生了變化。

找解決思路(方法):每人多種7-5=2(棵),那么,全班就多種了75+15=90(棵),全班人數為90÷2=45(人)。

4、分類法

根據事物的共同點和差異點將事物區(qū)分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。

分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重復、不遺漏、不交叉。

例6:自然數按約數的個數來分,可分成幾類?

答:可分為三類。(1)只有一個約數的數,它是一個單位數,只有一個數1;(2)有兩個約數的,也叫質數,有無數個;(3)有三個約數的,也叫合數,也有無數個。

5、分析法

把整體分解為部分,把復雜的事物分解為各個部分或要素,并對這些部分或要素進行研究、推導的一種思維方法叫做分析法。

依據:總體都是由部分構成的。

思路:為了更好地研究和解決總體,先把整體的各部分或要素割裂開來,再分別對照要求,從而理順解決問題的思路。

也就是從求解的問題出發(fā),正確選擇所需要的兩個條件,依次推導,一直到問題得到解決為止,這種解題模式是“由果溯因”。分析法也叫逆推法。常用“枝形圖”進行圖解思路。

例7:玩具廠計劃每天生產200件玩具,已經生產了6天,共生產1260件。問平均每天超過計劃多少件?

思路:要求平均每天超過計劃多少件,必須知道:計劃每天生產多少件和實際每天生產多少件。計劃每天生產多少件已知,實際每天生產多少件,題中沒有告訴, 還得求出來。要求實際每天生產多少件玩具,必須知道:實際生產多少天,和實際生產多少件,這兩個條件題中都已知。

6、綜合法

把對象的各個部分或各個方面或各個要素聯(lián)結起來,并組合成一個有機的整體來研究、推導和一種思維方法叫做綜合法。

用綜合法解數學題時,通常把各個題知看作是部分(或要素),經過對各部分(或要素)相互之間內在聯(lián)系一層層分析,逐步推導到題目要求,所以,綜合法的解題模式是執(zhí)因導果,也叫順推法。這種方法適用于已知條件較少,數量關系比較簡單的數學題。

例8:兩個質數,它們的差是小于30的合數,它們的和即是11的倍數又是小于50的偶數。寫出適合上面條件的各組數。

思路:11的倍數同時小于50的偶數有22和44。

兩個數都是質數,而和是偶數,顯然這兩個質數中沒有2。

和是22的兩個質數有:3和19,5和17。它們的差都是小于30的合數嗎?

和是44的兩個質數有:3和41,7和37,13和31。它們的差是小于30的合數嗎?

這就是綜合法的思路。

7、方程法

用字母表示未知數,并根據等量關系列出含有字母的表達式(等式)。列方程是一個抽象概括的過程,解方程是一個演繹推導的過程。方程法最大的特點是把未知 數等同于已知數看待,參與列式、運算,克服了算術法必須避開求知數來列式的不足。有利于由已知向未知的轉化,從而提高了解題的效率和正確率。

例9:一個數擴大3倍后再增加100,然后縮小2倍后再減去36,得50。求這個數。

例10:一桶油,第一次用去40%,第二次比第一次多用10千克,還剩余6千克。這桶油重多少千克?

這兩題用方程解就比較容易。

8、參數法

用只參與列式、運算而不需要解出的字母或數表示有關數量,并根據題意列出算式的一種方法叫做參數法。參數又叫輔助未知數,也稱中間變量。參數法是方程法延伸、拓展的產物。

例11:汽車爬山,上山時平均每小時行15千米,下山時平均每小時行駛10千米,問汽車的平均速度是每小時多少千米?

上下山的平均速度不能用上下山的速度和除以2。而應該用上下山的路程÷2。

例12:一項工作,甲單獨做要4天完成,乙單獨做要5天完成。兩人合做要多少天完成?

其實,把總工作量看作“1”,這個“1”就是參數,如果把總工作量看作“2、3、4……”都可以,只不過看作“1”運算最方便。

9、排除法

排除對立的結果叫做排除法。

排除法的邏輯原理是:任何事物都有其對立面,在有正確與錯誤的多種結果中,一切錯誤的結果都排除了,剩余的只能是正確的結果。這種方法也叫淘汰法、篩選法或反證法。這是一種不可缺少的形式思維方法。

例13:為什么說除2外,所有質數都是奇數?

這就要用反證法:比2大的所有自然數不是質數就是合數。假設:比2大的質數有偶數,那么,這個偶數一定能被2整除,也就是說它一定有約數2。一個數的.約 數除了1和它本身外,還有別的約數(約數2),這個數一定是合數而不是質數。這和原來假定是質數對立(矛盾)。所以,原來假設錯誤。

例14:判斷題:(1)同一平面上兩條直線不平行,就一定相交。(錯)

(2)分數的分子和分母同乘以或同除以一個相同的數,分數大小不變。(錯)

10、特例法

對于涉及一般性結論的題目,通過取特殊值或畫特殊圖或定特殊位置等特例來解題的方法叫做特例法。特例法的邏輯原理是:事物的一般性存在于特殊性之中。

例15:大圓半徑是小圓半徑的2倍,大圓周長是小圓周長的()倍,大圓面積是小圓面積的()倍。

可以取小圓半徑為1,那么大圓半徑就是2。計算一下,就能得出正確結果。

例16:正方形的面積和邊長成正比例嗎?

如果正方形的邊長為a,面積為s。那么,s:a=a(比值不定)

所以,正方形的面積和邊長不成正比例。

11、化歸法

通過某種轉化過程,把問題歸結到一類典型問題來解題的方法叫做化歸法?;瘹w是知識遷移的重要途徑,也是擴展、深化認知的首要步驟?;瘹w法的邏輯原理是,事物之間是普遍聯(lián)系的?;瘹w法是一種常用的辯證思維方法。

例17:某制藥廠生產一批防“非典”藥,原計劃25人14天完成,由于急需,要提前4天完成,需要增加多少人?

這就需要在考慮問題時,把“總工作日”化歸為“總工作量”。

例18:超市運來馬鈴薯、西紅柿、豇豆三種蔬菜,馬鈴薯占25%,西紅柿和豇豆的重量比是4:5,已知豇豆比馬鈴薯多36千克,超市運來西紅柿多少千克?

需要把“西紅柿和豇豆的重量比4:5”化歸為“各占總重量的百分之幾”,也就是把比例應用題化歸為分數應用題。

數學解題思維方法

第一,要訓練邏輯能力。所謂的數學思維,最重要的就是邏輯思維,因此,我們要特別注重邏輯思維的培養(yǎng)。而邏輯思維的最重要的構成,我認為一是邏輯關系,二是分類判斷。因此,培養(yǎng)邏輯問題,不僅僅是做做邏輯推理題就能夠養(yǎng)成的,還要做一些其他的數學題目進行訓練,甚至在生活中發(fā)掘邏輯思維。對于低年級甚至是幼兒來說,一些益智類玩具會起到很好的作用,比如邏輯狗等等,整套玩具分年齡層次和不同階段,對多種邏輯關系進行了全方位的培養(yǎng),建議家有萌寶的可以嘗試一下。如果是高年級的學生,我建議在日常習題的基礎上,適當添加閱讀材料的訓練,也就是培養(yǎng)孩子的語言歸納和理解能力,因為閱讀的過程也是一個梳理思路的過程。

第二,要訓練歸納能力。很多同學都認為數學難學,具體表現在數學比較抽象,它不像語文那樣“寫實”,往往用“1”代表總量,用x代表未知數,用a代表各種變量,說到底,同學們頭疼的是數學的高度抽象。我們說數學的妙處就在于從特殊中找尋一般,總結歸納出一般情況下的規(guī)律,因此,要學好數學必須建立歸納推理能力。這里,我建議對于低年級的同學,多用觀察法而不是去記公式,自己主動的探索數學奧秘,哪怕做錯了題目也不要緊,通過觀察,自己分析問題總結規(guī)律,形成自己對問題的認識。對于高年級的同學,我建議適當進行專項訓練,在日常習題過程中,要主動培養(yǎng)自己從簡單到復雜處理問題的能力,適當的使用“代入數字”的方法,對問題進行簡化,對問題進行解析。

第三,要訓練“定勢”思維。思維定勢是解決問題的一種成熟的表現,所謂經典題型有經典解法就是這個意思。一般來說,老師都會歸納總結出一系列經典的解題方法,對不同類型的題目,講授專項的思維方式方法,也就是所謂的思維定勢,如果沒有建立思維定勢,恰恰說明學生沒有掌握住基本的解題方法和技巧。因此,我建議首先要建立解決數學問題的思維定勢,運用定勢思維來解決數學問題。如何建立“定勢”思維呢,很簡單,就是多做類型題,建立一個習題本,將同類題目進行歸類,每一類題目都做一定量的訓練,形成“條件反射”,對不同類型題要組織歸納出一定的“套路”,遇到此類題目可以按“套路”出牌。

第四,要訓練“破勢”思維。當我們處理簡單的類型題目時,我們用常用方法,套用公式,根據定勢解答即可,但是,當我們遇到綜合性問題時,用帶公式法解題往往出錯,因此,破除思維定勢的有效方法就是建立知識點與知識點之間的聯(lián)系,形成系統(tǒng)思維而不是定勢思維,用體系結構而不是單兵作戰(zhàn)的方式對抗復雜問題,我們可以在每一個單元學習后,制定筆記或者繪制思維導圖,這樣,一段時間以后,相關知識點都建立了相對獨立又完整的知識架構,在此基礎上,分析綜合,形成各個知識點之間的串聯(lián)關系,最好以圖形的方式進行表示,久而久之,即可形成對整個知識脈絡的整體性把握,建立起層次分明,脈絡清晰,互相關聯(lián)的知識結構體系,這時候,我們在做題目的時候,手中就不再是使用“棍棒刀叉”,而是“武器套裝”,題目自然會迎刃而解了。

數學解題技巧

配方法

所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式正整數次冪的和形式。通過配方解決數學問題的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是數學中一種重要的恒等變形的方法,它的應用非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數的極值和解析式等方面都經常用到它。

因式分解法

因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數學的一個有力工具、一種數學方法在代數、幾何、三角函數等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數等等。

換元法

換元法是數學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數或變數稱為元,所謂換元法,就是在一個比較復雜的數學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。

判別式法與韋達定理

一元二次方程ax2 bx c=0(a、b、c∈R,a≠0)根的判別式△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數式變形,解方程(組),解不等式,研究函數乃至解析幾何、三角函數運算中都有非常廣泛的應用。

韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數的和與積,求這兩個數等簡單應用外,還可以求根的對稱函數,計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。

待定系數法

在解數學問題時,若先判斷所求的結果具有某種確定的形式,其中含有某些待定的系數,而后根據題設條件列出關于待定系數的等式,最后解出這些待定系數的值或找到這些待定系數間的某種關系,從而解答數學問題,這種解題方法稱為待定系數法。它是中學數學中常用的重要方法之一。

構造法

在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數學方法,我們稱為構造法。運用構造法解題,可以使代數、三角、幾何等各種數學知識互相滲透,有利于問題的解決。

數學解題方法

解題的學習過程通常的程序是:閱讀數學知識,理解概念;在對例題和老師的講解進行反思,思考例題的方法、技巧和解題的規(guī)范過程;然后做數學練習題。

基本題要練程序和速度;典型題嘗試一題多解開發(fā)數學思維;最后要及時總結反思改錯,交流學習好的解法和技巧。

著名的`數學教育家波利亞說“如果沒有反思,就錯過了解題的的一次重要而有意義的方面?!?/p>

教師在教學設計中要讓解學生好數學問題,就要對數學思想方法有清楚的認識,才能更好的挖掘題目的功能,引導學生發(fā)現總結題目的解法和技巧,提高解題能力。

1.函數與方程的思想

函數與方程的思想是中學數學最基本的思想。所謂函數的思想是指用運動變化的觀點去分析和研究數學中的數量關系,建立函數關系或構造函數,再運用函數的圖像與性質去分析、解決相關的問題。

而所謂方程的思想是分析數學中的等量關系,去構建方程或方程組,通過求解或利用方程的性質去分析解決問題。

2.數形結合的思想

數與形在一定的條件下可以轉化。如某些代數問題、三角問題往往有幾何背景,可以借助幾何特征去解決相關的代數三角問題;而某些幾何問題也往往可以通過數量的結構特征用代數的方法去解決。

因此數形結合的思想對問題的解決有舉足輕重的作用。

3.分類討論的思想

分類討論的思想之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養(yǎng)學生的分析和解決問題的能力。

原因四是實際問題中常常需要分類討論各種可能性。

解決分類討論問題的關鍵是化整為零,在局部討論降低難度。

1822361